login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078018 a(0)=1, for n>=1 a(n)=sum(k=0,n,6^k*N(n,k)) where N(n,k) =1/n*C(n,k)*C(n,k+1) are the Narayana numbers (A001263). 9
1, 1, 7, 55, 469, 4237, 39907, 387739, 3858505, 39130777, 402972031, 4202705311, 44299426717, 471189693925, 5051001609115, 54513542257795, 591858123926545, 6459813793353265, 70837427884259575, 780073647992404615 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

More generally coefficients of (1+m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/((2*m+2)*x) are given by : a(n)=sum(k=0,n,(m+1)^k*N(n,k))

The Hankel transform of this sequence is 6^C(n+1,2). - Philippe Deléham, Oct 29 2007

Shifts left when INVERT transform applied six times. - Benedict W. J. Irwin, Feb 07 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

FORMULA

G.f.: (1+5*x-sqrt(25*x^2-14*x+1))/(12*x).

a(n) = Sum_{k=0..n} A088617(n, k)*6^k*(-5)^(n-k). - Philippe Deléham, Jan 21 2004

a(n) = ( 7*(2*n-1)*a(n-1) - 25*(n-2)*a(n-2) ) / (n+1) for n>=2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005

a(n) = upper left term in M^n, M = the production matrix:

1, 1

6, 6, 6

1, 1, 1, 1

6, 6, 6, 6, 6

1, 1, 1, 1, 1, 1

...

- Gary W. Adamson, Jul 08 2011

a(n) ~ sqrt(12+7*sqrt(6))*(7+2*sqrt(6))^n/(12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012

G.f.: 1/(1 - x/(1 - 6*x/(1 - x/(1 - 6*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017

MAPLE

A078018_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;

for w from 1 to n do a[w] := a[w-1]+6*add(a[j]*a[w-j-1], j=1..w-1) od;

convert(a, list) end: A078018_list(19);

# Peter Luschny, May 19 2011

MATHEMATICA

Table[SeriesCoefficient[(1+5*x-Sqrt[25*x^2-14*x+1])/(12*x), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2012 *)

PROG

(PARI) a(n)=if(n<1, 1, sum(k=0, n, 6^k/n*binomial(n, k)*binomial(n, k+1)))

CROSSREFS

Cf. A001003, A007564, A059231.

Sequence in context: A113714 A246459 A152262 * A108628 A116862 A096307

Adjacent sequences:  A078015 A078016 A078017 * A078019 A078020 A078021

KEYWORD

nonn

AUTHOR

Benoit Cloitre, May 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 18 18:10 EDT 2017. Contains 290732 sequences.