login
A078018
a(n) = Sum_{k=0..n} 6^k*N(n,k), with a(0)=1, where N(n,k) = C(n,k) * C(n,k+1)/n are the Narayana numbers (A001263).
10
1, 1, 7, 55, 469, 4237, 39907, 387739, 3858505, 39130777, 402972031, 4202705311, 44299426717, 471189693925, 5051001609115, 54513542257795, 591858123926545, 6459813793353265, 70837427884259575, 780073647992404615
OFFSET
0,3
COMMENTS
More generally, coefficients of (1 + m*x - sqrt(m^2*x^2 - (2*m+4)*x + 1) )/( (2*m+2)*x ) are given by a(n) = Sum_{k=0..n} (m+1)^k*N(n,k).
The Hankel transform of this sequence is 6^C(n+1,2). - Philippe Deléham, Oct 29 2007
Shifts left when INVERT transform applied six times. - Benedict W. J. Irwin, Feb 07 2016
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
FORMULA
G.f.: (1 + 5*x - sqrt(25*x^2-14*x+1))/(12*x).
a(n) = Sum_{k=0..n} A088617(n, k)*6^k*(-5)^(n-k). - Philippe Deléham, Jan 21 2004
a(n) = ( 7*(2*n-1)*a(n-1) - 25*(n-2)*a(n-2) ) / (n+1) for n>=2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, M = the production matrix:
1, 1;
6, 6, 6;
1, 1, 1, 1;
6, 6, 6, 6, 6;
1, 1, 1, 1, 1, 1;
... (End)
a(n) ~ sqrt(12+7*sqrt(6))*(7+2*sqrt(6))^n/(12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012
G.f.: 1/(1 - x/(1 - 6*x/(1 - x/(1 - 6*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017
a(n) = hypergeom([1 - n, -n], [2], 6). - Peter Luschny, Mar 19 2018
MAPLE
A078018_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := a[w-1]+6*add(a[j]*a[w-j-1], j=1..w-1) od;
convert(a, list) end: A078018_list(19);
# Peter Luschny, May 19 2011
MATHEMATICA
Table[SeriesCoefficient[(1+5*x-Sqrt[25*x^2-14*x+1])/(12*x), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2012 *)
a[n_]:= Hypergeometric2F1[1 - n, -n, 2, 6]; Table[a[n], {n, 0, 20}] (* Peter Luschny, Mar 19 2018 *)
PROG
(PARI) a(n)=if(n<1, 1, sum(k=0, n, 6^k/n*binomial(n, k)*binomial(n, k+1)))
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1 + 5*x - Sqrt(25*x^2-14*x+1))/(12*x) )); // G. C. Greubel, Jun 29 2019
(Sage) a=((1 + 5*x - sqrt(25*x^2-14*x+1))/(12*x)).series(x, 30).coefficients(x, sparse=False); [1]+a[1:] # G. C. Greubel, Jun 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 10 2003
STATUS
approved