login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078001 Expansion of (1-x)/(1-2*x+x^2+x^3). 2
1, 1, 1, 0, -2, -5, -8, -9, -5, 7, 28, 54, 73, 64, 1, -135, -335, -536, -602, -333, 472, 1879, 3619, 4887, 4276, 46, -9071, -22464, -35903, -40271, -22175, 31824, 126094, 242539, 327160, 285687, 1675, -609497, -1506356, -2404890, -2693927, -1476608, 2145601, 8461737, 16254481, 21901624 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..45.

FORMULA

a(n) = Sum_{k=0..floor(n/3)} (-1)^k*binomial(n-k, 2*k). - Vladeta Jovovic, Feb 10 2003

a(0)=1, a(n+1)=a(n) - Sum_{k=0..n-2} a(k). - Alex Ratushnyak, May 03 2012

a(0)=1, a(1)=1, a(2)=1, a(n)=2*a(n-1)-a(n-2)-a(n-3). - Harvey P. Dale, Nov 03 2013

MATHEMATICA

CoefficientList[Series[(1-x)/(1-2x+x^2+x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, -1, -1}, {1, 1, 1}, 50] (* Harvey P. Dale, Nov 03 2013 *)

PROG

(Python)

a = [1]*1000

for n in range(55):

.    print a[n],

.    sum=0

.    for k in range(n-1):

.    .    sum+=a[k]

.    a[n+1] = a[n]-sum

# from Alex Ratushnyak, May 03 2012

(PARI) Vec((1-x)/(1-2*x+x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

CROSSREFS

Cf. A005251, A077856.

Sequence in context: A011279 A185094 A071099 * A072955 A153129 A076871

Adjacent sequences:  A077998 A077999 A078000 * A078002 A078003 A078004

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 20:17 EST 2014. Contains 252174 sequences.