The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077997 Expansion of (1-x)/(1-2*x-x^2-x^3). 3

%I

%S 1,1,3,8,20,51,130,331,843,2147,5468,13926,35467,90328,230049,585893,

%T 1492163,3800268,9678592,24649615,62778090,159884387,407196479,

%U 1037055435,2641191736,6726635386,17131517943,43630863008,111119879345,283002139641,720755021635

%N Expansion of (1-x)/(1-2*x-x^2-x^3).

%C Number of compositions of n where there is one sort of part 1, two sorts of part 2, and three sorts of every other part. - _Joerg Arndt_, Mar 15 2014

%H G. C. Greubel, <a href="/A077997/b077997.txt">Table of n, a(n) for n = 0..1000</a>

%H Yüksel Soykan, <a href="https://arxiv.org/abs/1910.03490">Summing Formulas For Generalized Tribonacci Numbers</a>, arXiv:1910.03490 [math.GM], 2019.

%H Yüksel Soykan, <a href="http://www.ijaamm.com/uploads/2/1/4/8/21481830/v7n3p6_57-76.pdf">Generalized Tribonacci Numbers: Summing Formulas</a>, Int. J. Adv. Appl. Math. and Mech. (2020) Vol. 7, No. 3, 57-76.

%H Yüksel Soykan, <a href="https://doi.org/10.9734/ACRI/2020/v20i430187">On the Sums of Squares of Generalized Tribonacci Numbers: Closed Formulas of Sum_{k=0..n} x^k * W_k^2</a>, Archives of Current Research International (2020) Vol. 20, Issue 4, Article no. ACRI.57840, 22-47.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,1).

%F a(n) = 2*a(n-1) + a(n-2) + a(n-3), n>2, with a(0)=1, a(1)=1, a(2)=3. - _Philippe Deléham_, Nov 20 2008

%F If p[1]=1, p[2]=2, p[i]=3, (i>2), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - _Milan Janjic_, May 02 2010

%F a(n) = Sum_{m=1..n} Sum_{i=0..n-m} binomial(m+i-1,m-1)*Sum_{j=0..m} binomial(j,n-3*m+2*j-i)*binomial(m,j), n>0, a(0)=1. - _Vladimir Kruchinin_, May 12 2011

%t CoefficientList[Series[(1-x)/(1-2x-x^2-x^3),{x,0,30}],x] (* or *) LinearRecurrence[{2,1,1},{1,1,3},30] (* _Harvey P. Dale_, May 24 2011 *)

%o (Maxima) a(n):=sum(sum(binomial(m+i-1,m-1) * sum(binomial(j,n-3*m+2*j-i) * binomial(m,j),j,0,m), i,0,n-m), m,1,n); /* _Vladimir Kruchinin_, May 12 2011 */

%o (PARI) Vec((1-x)/(1-2*x-x^2-x^3)+O(x^30)) \\ _Charles R Greathouse IV_, Sep 26 2012

%o (MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/( 1-2*x-x^2-x^3) )); // _G. C. Greubel_, Jun 27 2019

%o (Sage) ((1-x)/(1-2*x-x^2-x^3)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 27 2019

%o (GAP) a:=[1,1,3];; for n in [4..30] do a[n]:=2*a[n-1]+a[n-2]+a[n-3]; od; a; # _G. C. Greubel_, Jun 27 2019

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Nov 17 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 10:54 EDT 2020. Contains 337428 sequences. (Running on oeis4.)