login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077984 Expansion of 1/(1+2*x-2*x^2+2*x^3). 1
1, -2, 6, -18, 52, -152, 444, -1296, 3784, -11048, 32256, -94176, 274960, -802784, 2343840, -6843168, 19979584, -58333184, 170311872, -497249280, 1451788672, -4238699648, 12375475200, -36131927040, 105492203776, -307999212032, 899246685696, -2625476203008, 7665444201472 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-2, 2, -2).

FORMULA

a(n) = -2*a(n-1) + 2*a(n-2) - 2*a(n-3).

a(n) is the nearest integer to c*d^n where c=0.7166689603... satisfies 67*c^3 - 67*c^2 + 15*c - 1 = 0 and d=-2.9196395658... satisfies d^3 + 2*d^2 - 2*d + 2 = 0.

a(n) = (-1)^n * A077835(n). - R. J. Mathar, Aug 07 2015

MATHEMATICA

CoefficientList[Series[1/(1+2x-2x^2+2x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{-2, 2, -2}, {1, -2, 6}, 30] (* Harvey P. Dale, Jun 17 2014 *)

PROG

(PARI) my(x='x+O('x^30)); Vec(1/(1+2*x-2*x^2+2*x^3)) \\ G. C. Greubel, Jun 25 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1+2*x-2*x^2+2*x^3) )); // G. C. Greubel, Jun 25 2019

(Sage) (1/(1+2*x-2*x^2+2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019

(GAP) a:=[1, -2, 6];; for n in [4..30] do a[n]:=-2*a[n-1]+2*a[n-2] - 2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019

CROSSREFS

Cf. A077835.

Sequence in context: A156989 A077935 A077835 * A052979 A005507 A252822

Adjacent sequences:  A077981 A077982 A077983 * A077985 A077986 A077987

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 05:07 EST 2019. Contains 329323 sequences. (Running on oeis4.)