login
A077974
Expansion of 1/(1+x+2*x^3).
3
1, -1, 1, -3, 5, -7, 13, -23, 37, -63, 109, -183, 309, -527, 893, -1511, 2565, -4351, 7373, -12503, 21205, -35951, 60957, -103367, 175269, -297183, 503917, -854455, 1448821, -2456655, 4165565, -7063207, 11976517, -20307647, 34434061, -58387095, 99002389, -167870511, 284644701
OFFSET
0,4
FORMULA
a(0)=1, a(1)=-1, a(2)=1, a(n)=a(n-1)-2*a(n-3). - Harvey P. Dale, Aug 29 2012
MATHEMATICA
CoefficientList[Series[1/(1+x+2*x^3), {x, 0, 45}], x] (* or *) LinearRecurrence[ {-1, 0, -2}, {1, -1, 1}, 45] (* Harvey P. Dale, Aug 29 2012 *)
PROG
(PARI) Vec(1/(1+x+2*x^3)+O(x^45)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 45); Coefficients(R!( 1/(1+x+2*x^3) )); // G. C. Greubel, Jun 25 2019
(Sage) (1/(1+x+2*x^3)).series(x, 45).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
(GAP) a:=[1, -1, 1];; for n in [4..45] do a[n]:=-a[n-1]-2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
CROSSREFS
Signed version of A077949.
Sequence in context: A127443 A003229 A077949 * A126273 A007658 A275175
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved