login
A077948
Expansion of 1/(1-x-x^2+2*x^3).
6
1, 1, 2, 1, 1, -2, -3, -7, -6, -7, 1, 6, 21, 25, 34, 17, 1, -50, -83, -135, -118, -87, 65, 214, 453, 537, 562, 193, -319, -1250, -1955, -2567, -2022, -679, 2433, 5798, 9589, 10521, 8514, -143, -12671, -29842, -42227, -46727, -29270, 8457, 72641, 139638, 195365, 189721, 105810, -95199, -368831
OFFSET
0,3
COMMENTS
Row sums of Riordan array (1/(1-x^2), x*(1-2*x^2)/(1-x^2)), A117355. - Paul Barry, Mar 09 2006
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(j-(n-k)/2-1,j)*C(k,j)*(1+(-1)^(n-k))/2. - Paul Barry, Mar 09 2006
a(n) = a(n-1) + a(n-2) - 2*a(n-3). If defined by this recurrence, the sequence could be preceded by 0, 0. - Paul Curtz, Feb 17 2008
MATHEMATICA
CoefficientList[Series[1/(1-x-x^2+2x^3), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 1, -2}, {1, 1, 2}, 60] (* Harvey P. Dale, Mar 15 2013 *)
PROG
(PARI) Vec(1/(1-x-x^2+2*x^3)+O(x^60)) \\ Charles R Greathouse IV, Sep 25 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/(1-x-x^2+2*x^3) )); // G. C. Greubel, Jul 03 2019
(Sage) (1/(1-x-x^2+2*x^3)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Jul 03 2019
(GAP) a:=[1, 1, 2];; for n in [4..60] do a[n]:= a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jul 03 2019
CROSSREFS
Cf. A077971.
Sequence in context: A088022 A284999 A016732 * A077971 A030018 A010739
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved