login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077903 Expansion of (1-x)^(-1)/(1+x-x^2+2*x^3). 0
1, 0, 2, -3, 6, -12, 25, -48, 98, -195, 390, -780, 1561, -3120, 6242, -12483, 24966, -49932, 99865, -199728, 399458, -798915, 1597830, -3195660, 6391321, -12782640, 25565282, -51130563, 102261126, -204522252, 409044505, -818089008, 1636178018, -3272356035, 6544712070 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Convolution of A010892(n) and (-1)^n*A001045(n+1). The positive sequence has g.f. 1/((1-x-2x^2)(1+x+x^2)). This is the convolution of A001045(n+1) and A049347(n). - Paul Barry, May 19 2004

LINKS

Table of n, a(n) for n=0..34.

Index to sequences with linear recurrences with constant coefficients, signature (0,2,-3,2)

FORMULA

G.f. : 1/((1+x-2x^2)(1-x+x^2)); a(n)=sum{k=0..n, (2*(-2)^k/3+1/3)2sin(pi*(n-k)/3+pi/3)/sqrt(3)}; a(n)=2^(n+3)cos(pi*n)/21+8sqrt(3)cos(pi*n/3+pi/6)/63+4sqrt(3)sin(pi*n/3+pi/3)/63 +2sqrt(3)sin(pi*n/3)/9+1/3; - Paul Barry, May 19 2004

a(n) = 1/3 +(-1)^n*2^(n+3)/21 - A117373(n+1)/7. - R. J. Mathar, Sep 27 2012

CROSSREFS

Sequence in context: A045761 A187741 A216632 * A038086 A032305 A032218

Adjacent sequences:  A077900 A077901 A077902 * A077904 A077905 A077906

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 22:53 EST 2014. Contains 252290 sequences.