login
Expansion of (1-x)^(-1)/(1 - 2*x + x^2 - x^3).
9

%I #39 Apr 15 2024 03:26:49

%S 1,3,6,11,20,36,64,113,199,350,615,1080,1896,3328,5841,10251,17990,

%T 31571,55404,97228,170624,299425,525455,922110,1618191,2839728,

%U 4983376,8745216,15346785,26931731,47261894,82938843,145547524,255418100,448227520,786584465

%N Expansion of (1-x)^(-1)/(1 - 2*x + x^2 - x^3).

%C a(n) is the number of binary words of length n+2 such that there is at least one run of 0's and every run of 0's is of length >=2. a(1)=3 because we have: {0,0,0}, {0,0,1}, {1,0,0}. - _Geoffrey Critzer_, Jan 12 2013

%C INVERT transform of A099254: (1, 2, 1, -2, -4, -2, 3, 6, 3, ...). - _Gary W. Adamson_, Jan 11 2017

%H Seiichi Manyama, <a href="/A077855/b077855.txt">Table of n, a(n) for n = 0..4092</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,2,-1).

%F G.f.: (1-x)^(-1)/(1 - 2*x + x^2 - x^3).

%F a(n) = A005251(n+4) - 1. a(n+1) - a(n) = A005314(n+2). - _R. J. Mathar_, Sep 19 2008

%F a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4). - _Seiichi Manyama_, Nov 25 2016

%F a(n) = Sum_{i=1..(n+3)} binomial((n+3)-i, (n+3)-3*i). - _Wesley Ivan Hurt_, Jul 07 2020

%F a(n) ~ (48 - 11*r + 29*r^2) / (23 * r^n), where r = 0.569840290998... is the root of the equation r*(2 - r + r^2) = 1. - _Vaclav Kotesovec_, Apr 15 2024

%t nn=40; a=x^2/(1-x); Drop[CoefficientList[Series[(a+1)/(1-x a/(1-x))/(1-x)-1/(1-x), {x,0,nn}], x], 2] (* _Geoffrey Critzer_, Jan 12 2013 *)

%t LinearRecurrence[{3, -3, 2, -1}, {1, 3, 6, 11}, 36] (* or *)

%t CoefficientList[ Series[1/(x^4 - 2 x^3 + 3 x^2 - 3 x + 1), {x, 0, 35}], x] (* _Robert G. Wilson v_, Nov 25 2016 *)

%o (PARI) Vec((1-x)^(-1)/(1-2*x+x^2-x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012

%Y Cf. A018918, A099254, A005314 (first differences).

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Nov 17 2002