This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077855 Expansion of (1-x)^(-1)/(1 - 2*x + x^2 - x^3). 8
 1, 3, 6, 11, 20, 36, 64, 113, 199, 350, 615, 1080, 1896, 3328, 5841, 10251, 17990, 31571, 55404, 97228, 170624, 299425, 525455, 922110, 1618191, 2839728, 4983376, 8745216, 15346785, 26931731, 47261894, 82938843, 145547524, 255418100, 448227520, 786584465 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of binary words of length n+2 such that there is at least one run of 0's and every run of 0's is of length >=2. a(1)=3 because we have: {0,0,0}, {0,0,1}, {1,0,0}. - Geoffrey Critzer, Jan 12 2013 INVERT transform of A099254: (1, 2, 1, -2, -4, -2, 3, 6, 3, ...). - Gary W. Adamson, Jan 11 2017 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..4092 Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-1). FORMULA a(n) = A005251(n+4) - 1. a(n+1) - a(n) = A005314(n+2). - R. J. Mathar, Sep 19 2008 a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4). - Seiichi Manyama, Nov 25 2016 MATHEMATICA nn=40; a=x^2/(1-x); Drop[CoefficientList[Series[(a+1)/(1-x a/(1-x))/(1-x)-1/(1-x), {x, 0, nn}], x], 2] (* Geoffrey Critzer, Jan 12 2013 *) LinearRecurrence[{3, -3, 2, -1}, {1, 3, 6, 11}, 36] (* or *) CoefficientList[ Series[1/(x^4 - 2 x^3 + 3 x^2 - 3 x + 1), {x, 0, 35}], x] (* Robert G. Wilson v, Nov 25 2016 *) PROG (PARI) Vec((1-x)^(-1)/(1-2*x+x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012 CROSSREFS Cf. A018918, A099254. Sequence in context: A265076 A055417 A018918 * A054887 A019302 A119861 Adjacent sequences:  A077852 A077853 A077854 * A077856 A077857 A077858 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 22:58 EDT 2018. Contains 316518 sequences. (Running on oeis4.)