login
A077850
Expansion of (1-x)^(-1)/(1 - 2*x - x^2 + x^3).
4
1, 3, 8, 19, 44, 100, 226, 509, 1145, 2574, 5785, 13000, 29212, 65640, 147493, 331415, 744684, 1673291, 3759852, 8448312, 18983186, 42654833, 95844541, 215360730, 483911169, 1087338528, 2443227496, 5489882352, 12335653673, 27717962203, 62281695728, 139945699987
OFFSET
0,2
COMMENTS
a(n) = A052534(n+1) - 1.
FORMULA
a(n) = sum(k=0..n+2, A006054(k)). - Philippe Deléham, Sep 07 2006
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) + a(n-4), n>3. Also a(n)=Sum_{k=0..n} A188106(n,k), n=0,1,2,..., giving partial sums of first convolution of A006054 with itself. - L. Edson Jeffery, Apr 22 2011
MATHEMATICA
CoefficientList[Series[(1-x)^(-1)/(1-2x-x^2+x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{3, -1, -2, 1}, {1, 3, 8, 19}, 40] (* Harvey P. Dale, Jan 22 2013 *)
PROG
(PARI) Vec(1/(1-x)/(1-2*x-x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Cf. A188106. See also A189247. - L. Edson Jeffery, Apr 22 2011
Sequence in context: A121551 A189391 A281812 * A097550 A079490 A361506
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved