login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077840 Expansion of (1-x)/(1-2*x-3*x^2-3*x^3). 0

%I

%S 1,1,5,16,50,163,524,1687,5435,17503,56372,181558,584741,1883272,

%T 6065441,19534921,62915981,202633048,652618802,2101884691,6769524932,

%U 21802560343,70219349555,226154954935,728375639564,2345874192598,7555340168693,24333429833872

%N Expansion of (1-x)/(1-2*x-3*x^2-3*x^3).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2, 3, 3).

%F a(0)=1 and, for n >= 1, a(n) = Sum(k=1..n, Sum(i=k..n,(Sum(j=0..k, binomial(j,-3*k+2*j+i)*3^(-2*k+j+i)*binomial(k,j)))*binomial(n+k-i-1,k-1))). - _Vladimir Kruchinin_, May 05 2011

%F a(0)=1, a(1)=1, a(2)=5, a(n) = 2*a(n-1) + 3*a(n-2) + 3*a(n-3). - _Harvey P. Dale_, Aug 19 2014

%t CoefficientList[Series[(1-x)/(1-2x-3x^2-3x^3),{x,0,30}],x] (* or *) LinearRecurrence[{2,3,3},{1,1,5},30] (* _Harvey P. Dale_, Aug 19 2014 *)

%o (Maxima)

%o a(n):=sum(sum((sum(binomial(j,-3*k+2*j+i)*3^(-2*k+j+i)*binomial(k,j),j,0,k))*binomial(n+k-i-1,k-1),i,k,n),k,1,n); /* _Vladimir Kruchinin_, May 05 2011 */

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Nov 17 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 26 04:04 EDT 2019. Contains 322469 sequences. (Running on oeis4.)