login
Numbers k such that (10^k - 1)/9 + 8*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
2

%I #24 Mar 26 2020 11:13:12

%S 3,9,53,375,453,1749,26619

%N Numbers k such that (10^k - 1)/9 + 8*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

%C Prime versus probable prime status and proofs are given in the author's table.

%D C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

%H Patrick De Geest, World!Of Numbers, <a href="http://www.worldofnumbers.com/wing.htm#pwp191">Palindromic Wing Primes (PWP's)</a>

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/1/11911.htm#prime">Prime numbers of the form 11...11911...11</a>

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = 2*A107649(n) + 1.

%e 9 is a term because (10^9 - 1)/9 + 8*10^4 = 111191111.

%Y Cf. A004023, A077775-A077798, A107123-A107127, A107648, A107649, A115073, A183174-A183187.

%K more,nonn,base

%O 1,1

%A _Patrick De Geest_, Nov 16 2002

%E Name corrected by _Jon E. Schoenfield_, Oct 30 2018