The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077762 Number of ways of pairing the squares of the numbers 1 to n with the squares of the numbers n+1 to 2n such that each pair sums to a prime. Because an odd square must always be added to an even square to obtain a prime, this sequence is the product of A077763 and A077764. 3
 1, 1, 0, 1, 2, 0, 1, 1, 4, 8, 0, 8, 42, 28, 140, 616, 836, 180, 1416, 2542, 10960, 96048, 242204, 367587, 923949, 1145430, 2622420, 19081728, 245846500, 2934255428, 6725485476, 7722272142, 26106311490, 114470819132, 331909473776, 330258090272, 4585951400436, 37021666628450 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Apparently, for n>11, there seems always to be a pairing possible. Note that all primes have the 4k+1 form. By the 4k+1 theorem, such a prime has a unique representation as the sum of two squares. LINKS Bert Dobbelaere, Table of n, a(n) for n = 1..50 L. E. Greenfield and S. J. Greenfield, Some Problems of Combinatorial Number Theory Related to Bertrand's Postulate, J. Integer Sequences, 1998, #98.1.2. FORMULA a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether i^2 + (j+n)^2 is prime or composite, respectively. - T. D. Noe, Feb 10 2007 EXAMPLE a(5) = 2 because there are two ways: (1,4,9,16,25) + (36,49,100,81,64) = (37,53,109,97,89) and (1,4,9,16,25) + (100,49,64,81,36) = (101,53,73,97,61). MATHEMATICA lst1*lst2 (* which are defined in A077763 and A077764 *) CROSSREFS Cf. A000348, A070897, A077763, A077764. Sequence in context: A247504 A306800 A235955 * A244677 A243986 A322838 Adjacent sequences:  A077759 A077760 A077761 * A077763 A077764 A077765 KEYWORD nonn AUTHOR T. D. Noe, Nov 15 2002 EXTENSIONS More terms from Bert Dobbelaere, Sep 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 23:36 EST 2020. Contains 338898 sequences. (Running on oeis4.)