login
a(1) = 5, a(n)= smallest multiple of a(n-1) that contains all the digits of a(n-1). Or which can be obtained by inserting digits anywhere in a permutation of digits of a(n-1). (prefix,suffix or insertion). a(n) is not equal to 10*a(n-1).
2

%I #5 Dec 05 2013 19:55:55

%S 5,15,105,6510,156240,12655440,11554416720,12675195141840,

%T 10571112748294560,14112435518973237600,77999431113365084215200,

%U 45317669476865113929031200,136995314828563239407461317600

%N a(1) = 5, a(n)= smallest multiple of a(n-1) that contains all the digits of a(n-1). Or which can be obtained by inserting digits anywhere in a permutation of digits of a(n-1). (prefix,suffix or insertion). a(n) is not equal to 10*a(n-1).

%Y Cf. A077703.

%K base,nonn

%O 1,1

%A _Amarnath Murthy_, Nov 18 2002

%E Corrected and extended by _Ray Chandler_, Jul 27 2003