|
|
A077647
|
|
Smallest term of a run of at least 8 consecutive integers which are not squarefree.
|
|
11
|
|
|
1092747, 7216618, 8870024, 8870025, 14379271, 22635347, 24816974, 25047846, 33678771, 33908368, 33908369, 34394371, 34682346, 37923938, 49250144, 49250145, 53379270, 69147868, 69147869, 70918820, 70918821, 71927247, 72913022, 83605071, 85972019, 90571646
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
A077647 = { A077640[k] | A077640[k+1] = A077640[k]+1 }. - M. F. Hasler, Feb 01 2016
|
|
EXAMPLE
|
n=8870024: squares dividing n+j (j=0...8) i.e. 9 consecutive integers are as follows {4,25,121,841,4,49,961,9,16}
|
|
MATHEMATICA
|
s8[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 7}]] If[Equal[s, 0], Print[n]], {n, 1000000, 100000000}]
Flatten[Position[Partition[SquareFreeQ/@Range[91000000], 8, 1], _?(Union[#]=={False}&), {1}, Heads->False]]
|
|
PROG
|
(PARI) for(n=1, 10^8, forstep(k=7, 0, -1, issquarefree(n+k)&&(n+=k)&&next(2)); print1(n", ")) \\ M. F. Hasler, Feb 03 2016
|
|
CROSSREFS
|
Cf. A013929, A051681.
Cf. A045882 (first k-chain), A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains), A268314 (11-chains).
Sequence in context: A224592 A252119 A109148 * A172647 A172754 A268036
Adjacent sequences: A077644 A077645 A077646 * A077648 A077649 A077650
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Nov 18 2002
|
|
STATUS
|
approved
|
|
|
|