login
A077602
Decimal expansion of lim_{n->inf} M(n,1)/2^n, where M(n,1) is the sum of the coefficients of the n-th Moebius polynomial (cf. A074587).
2
1, 5, 3, 0, 1, 9, 1, 4, 1, 4, 0, 1, 6, 5, 4, 9, 1, 8, 7, 1, 5, 4, 3, 6, 2, 3, 6, 1, 4, 9, 2, 6, 3, 3, 0, 2, 0, 2, 5, 9, 5, 1, 2, 3, 7, 4, 1, 1, 1, 5, 7, 1, 0, 0, 7, 0, 7, 0, 6, 0, 1, 1, 1, 3, 9, 3, 1, 7, 5, 3, 5, 5, 9, 5, 7, 1, 3, 7, 3, 1, 1, 3, 9, 8, 8, 1, 2
OFFSET
1,2
COMMENTS
Conjecture: M(n,1) ~ A077596(n) * sqrt(Pi*n/2), where A077596(n) is the largest coefficient of the n-th Moebius polynomial, M(n,x).
LINKS
EXAMPLE
1.530191414016549187154362361492633020259512374111571007070601113931753...
MATHEMATICA
Clear[Moebius, f]; Moebius[n_, x_] := Moebius[n, x] = 1 + x*Sum[Moebius[k, x]*Floor[n/k], {k, 1, n-1}]; f[n_] := f[n] = RealDigits[Moebius[n, 1]/2^n, 10, 70] // First; f[n=100]; While[f[n] != f[n-100], n = n+100]; f[n] (* Jean-François Alcover, Feb 13 2013 *)
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre and Paul D. Hanna, Nov 10 2002
STATUS
approved