OFFSET
1,2
COMMENTS
The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series sum_{k=1..n} x^a(k) to exceed unity.
A heuristic argument suggests that the limit of a(n)/n is m - sum_{n=m..inf} log(1 + x^n)/log(x) = 3.8170308430..., where x=8/13 and m=floor(log(1-x)/log(x))=1. - Paul D. Hanna, Nov 16 2002
By the time you reach sum_{n=1..59} (8/13)^a(n), the difference between that sum and 1 is only 1.6*10^-47.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n)=sum_{k=1..n}floor(g_k) where g_1=1, g_{n+1}=log_x(x^frac(g_n) - x) (n>0) at x=(8/13) and frac(y) = y - floor(y).
a(n) seems to be asymptotic to c*n with c around 3.7... - Benoit Cloitre
EXAMPLE
a(3)=11 since (8/13) +(8/13)^2 +(8/13)^11 < 1 and (8/13)+(8/13)^2+(8/13)^10 >1.
MAPLE
V:= Vector(100):
V[1]:= 1: T:= 1 - 8/13:
for n from 2 to 100 do
V[n]:= -floor(log[13/8](T));
T:= T - (8/13)^V[n];
od:
convert(V, list); # Robert Israel, Aug 11 2020
MATHEMATICA
s = 0; a = {}; Do[ If[s + (8/13)^n < 1, s = s + (8/13)^n; a = Append[a, n]], {n, 1, 250}]; a
heuristiclimit[x_] := (m=Floor[Log[x, 1-x]])+1/24+Log[x, Product[1+x^n, {n, 1, m-1}]/DedekindEta[I Log[x]/-Pi]*DedekindEta[ -I Log[x]/2/Pi]]; N[heuristiclimit[8/13], 20]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Nov 06 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Nov 08 2002. Also extended by Benoit Cloitre, Nov 06 2002
STATUS
approved