login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077397 Expansion of (1+31*x-2*x^2-2*x^3)/(1-16*x^2+x^4). 2
1, 31, 14, 494, 223, 7873, 3554, 125474, 56641, 1999711, 902702, 31869902, 14386591, 507918721, 229282754, 8094829634, 3654137473, 129009355423, 58236916814, 2056054857134, 928136531551, 32767868358721, 14791947588002, 522229838882402, 235743024876481 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,16,0,-1).

FORMULA

a(2*n+4) = 16*a(2*n+2) - a(2*n), with a(0)=1, a(2)=14;

a(2*n+5) = 16*a(2*n+3) - a(2n+1), with a(1)=31, a(3)=494.

a(n) = 16*a(n-2) - a(n-4) for n>3. - Colin Barker, Jul 27 2020

MATHEMATICA

CoefficientList[Series[(1+31x-2x^2-2x^3)/(1-16x^2+x^4), {x, 0, 40}], x]  (* Harvey P. Dale, Mar 25 2011 *)

PROG

(PARI) x='x+O('x^30); Vec((1+31*x-2*x^2-2*x^3)/(1-16*x^2+x^4)) \\ G. C. Greubel, Jan 18 2018

(MAGMA) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 30); Coefficients(R!(1+31*x-2*x^2-2*x^3)/(1-16*x^2+x^4))); // G. C. Greubel, Jan 18 2018

CROSSREFS

Used for calculating the values in A077398

Sequence in context: A040934 A320431 A107114 * A040933 A033351 A240910

Adjacent sequences:  A077394 A077395 A077396 * A077398 A077399 A077400

KEYWORD

easy,nonn

AUTHOR

Bruce Corrigan (scentman(AT)myfamily.com), Nov 05 2002

EXTENSIONS

More terms from Harvey P. Dale, Mar 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 14:51 EST 2020. Contains 338906 sequences. (Running on oeis4.)