OFFSET
0,2
COMMENTS
The first member of the (m,k) pairs are in A077259.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
Index entries for linear recurrences with constant coefficients, signature (1,18,-18,-1,1).
FORMULA
a(n) = (-1 + sqrt(8*b(n) + 1))/2 where b(n) are the entries in A077261.
a(n) = (sqrt(5*A000045(A007310(n+1))^2 - 4) - 1)/2. - Vladeta Jovovic, Nov 02 2002. - Definition corrected by R. J. Mathar, Sep 16 2009
G.f.: (x*(x^3+5*x^2-9*x-5))/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = 18*a(n-2) - a(n-4) + 8. - Vladimir Pletser, Mar 23 2020 ; a(-2) = -6, a(-1) = -1, a(0) = 0, a(1) = 5. [Edited by Vladimir Pletser, Jul 26 2020]
From Vladimir Pletser, Jul 26 2020: (Start)
Can be defined for negative n by setting a(-n) = - a(n-1) - 1 for all n in Z.
a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5). (End)
EXAMPLE
a(3) = (-1 + sqrt(8*4950 + 1))/2 = (-1 + sqrt(39601))/2 = (199 - 1)/2 = 99.
MAPLE
f := gfun:-rectoproc({a(-2) = -6, a(-1) = -1, a(0) = 0, a(1) = 5, a(n) = 18*a(n - 2) - a(n - 4) + 8}, a(n), remember); map(f, [$ (0 .. 40)])[]; #Vladimir Pletser, Jul 26 2020
MATHEMATICA
CoefficientList[Series[(x (x^3 + 5 x^2 - 9 x - 5))/((x - 1) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, 24}], x] (* Michael De Vlieger, Apr 21 2021 *)
PROG
(PARI) concat(0, Vec(x*(x^3+5*x^2-9*x-5)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^100))) \\ Colin Barker, May 15 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Bruce Corrigan (scentman(AT)myfamily.com), Nov 01 2002
STATUS
approved