login
A077261
Triangular numbers that are 5 times another triangular number.
11
0, 15, 105, 4950, 33930, 1594005, 10925475, 513264780, 3517969140, 165269665275, 1132775137725, 53216318953890, 364750076378430, 17135489433487425, 117448391818716855, 5517574381263997080, 37818017415550449000, 1776641815277573572455, 12177284159415425861265
OFFSET
0,2
FORMULA
a(n) = 5*A077260(n).
G.f.: (-15*x*(x^2+6*x+1))/((x-1)*(x^2-18*x+1)*(x^2+18*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = 322*a(n-2) - a(n-4) + 120. - Vladimir Pletser, Feb 09 2021
E.g.f.: (-6*cosh(x) - (-3 + sqrt(5))*cosh((9 - 4*sqrt(5))*x) + (3 + sqrt(5))*cosh((9 + 4*sqrt(5))*x) - 6*sinh(x) + (7 - 3*sqrt(5))*sinh((9 - 4*sqrt(5))*x) + (7 + 3*sqrt(5))*sinh((9 + 4*sqrt(5))*x))/16. - Stefano Spezia, Aug 15 2024
EXAMPLE
a(3)=5*990=4950.
MATHEMATICA
CoefficientList[Series[(-15 x (x^2 + 6 x + 1))/((x - 1) (x^2 - 18 x + 1) (x^2 + 18 x + 1)), {x, 0, 18}], x] (* Michael De Vlieger, Apr 21 2021 *)
CROSSREFS
Subsequence of A000217.
Sequence in context: A344886 A165892 A349169 * A012507 A143727 A231327
KEYWORD
easy,nonn
AUTHOR
Bruce Corrigan (scentman(AT)myfamily.com), Nov 01 2002
STATUS
approved