This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077119 a(n) = A077118(n) - n^3. 7
 0, 0, 1, -2, 0, -4, 9, 18, 17, 0, 24, -35, 36, 12, -40, -11, 0, -13, -56, 30, -79, -45, -39, -67, 100, 0, 113, -83, -48, -53, -104, 138, -7, 163, -100, -26, 0, -28, -116, 217, 9, 248, -104, 17, 80, 79, 8, -139, 297, 0, 316, -155, 17, 119, 145, 89, -55 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n)=0 iff n = m^(6*k). Values d=x^3-y^2 of extremal points of elliptic Mordell curves. Definition extremal points see A200656. Each value x have only one value of distance d when coordinate x is extremal point, but for many fixed distances d elliptic curve have more than 1 extremal point. - _Artur Jasiński_, Nov 30 2011 Theorem (*Artur Jasinski*): If a(n)>0 then a(n)<(4n^(3/2)-1)/4 for every n. If a(n)<0 then a(n)>(-4n^(3/2)-1)/4 for every n. a(n)=0 then n is perfect square. - _Artur Jasiński_, Dec 08 2011 LINKS FORMULA a(n) = if A077116(n) < A070929(n) then -A077116(n) else A070929(n). EXAMPLE A077118(10)=1024=32^2 is the nearest square to 10^3=1000, therefore a(10)=1024-1000=24. MATHEMATICA Table[Round[Sqrt[x^3]]^2 - x^3, {x, 0, 100}]  (* Artur Jasinski, Nov 30 2011 *) PROG (MAGMA) [Round(Sqrt(n^3))^2-n^3: n in [0..60]]; // Vincenzo Librandi, Mar 24 2015 CROSSREFS Cf. A000578, A077118, A077111. |a(n)| = A002938(n). Sequence in context: A070015 A021492 A287314 * A002938 A111938 A224822 Adjacent sequences:  A077116 A077117 A077118 * A077120 A077121 A077122 KEYWORD sign AUTHOR Reinhard Zumkeller, Oct 29 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 20:02 EDT 2019. Contains 326109 sequences. (Running on oeis4.)