



0, 0, 4, 2, 0, 4, 20, 19, 28, 0, 39, 35, 47, 81, 40, 11, 0, 13, 56, 135, 79, 45, 39, 67, 135, 0, 152, 83, 48, 53, 104, 207, 7, 216, 100, 26, 0, 28, 116, 270, 496, 277, 104, 546, 503, 524, 615, 139, 368, 0, 391, 155, 732, 652, 648, 726, 55, 293, 631, 170, 704
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

a(n) = 0 for n = m^2.  Zak Seidov, May 11 2007
It has been asked whether some primes do not occur in this sequence. It seems indeed that primes 3, 5, 17, 23, 29, 31, 37, 41, 43, 59, 61,... do not occur, primes 2, 7, 11, 13, 19, 47, 53, 67, 79, 83,... do. For further investigations, see A087285 = the range of this sequence, and also the related sequences A229618 = range of A181138, and A165288.  M. F. Hasler, Sep 26 2013 and Oct 05 2013


LINKS

Table of n, a(n) for n=0..60.


FORMULA

a(n) = A154333(n) unless n is a square or, equivalently, a(n)=0.  M. F. Hasler, Oct 05 2013
a(n) = A053186(n^3).  R. J. Mathar, Jul 12 2016


EXAMPLE

A065733(10) = 961 = 31^2 is the largest square less than or equal to 10^3 = 1000, therefore a(10) = 1000  961 = 39.


MAPLE

A077116 := proc(n)
A053186(n^3) ;
end proc: # R. J. Mathar, Jul 12 2016


MATHEMATICA

Table[c = n^3; c  Floor[Sqrt[c]]^2, {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 02 2011 *)


PROG

(PARI) A077116(n)=n^3sqrtint(n^3)^2 \\  M. F. Hasler, Sep 26 2013


CROSSREFS

Cf. A000578, A070929, A077118, A077119, A075847.
Sequence in context: A021708 A016690 A136715 * A249507 A348596 A135730
Adjacent sequences: A077113 A077114 A077115 * A077117 A077118 A077119


KEYWORD

nonn,easy


AUTHOR

Reinhard Zumkeller, Oct 29 2002


STATUS

approved



