login
Least k such that Z(k,5) <= Z(n,6) where Z(m,s) = Sum_{i>=m} 1/i^s.
0

%I #11 Oct 10 2019 04:02:30

%S 2,2,3,4,6,8,10,12,14,16,19,21,23,26,28,31,34,36,39,42,44,47,50,53,56,

%T 59,62,65,68,71,74,77,80,83,86,89,93,96,99,102,106,109,112,116,119,

%U 123,126,129,133,136,140,143,147,150,154,158,161,165,168,172,176,179,183

%N Least k such that Z(k,5) <= Z(n,6) where Z(m,s) = Sum_{i>=m} 1/i^s.

%o (PARI) u=5; v=6; a(n)=if(n<0,0,k=1; while((zeta(u)-sum(k=1,k-1,1/k^u))>(zeta(v)-sum(i=1,n-1,1/i^v)),k++); k)

%Y Cf. A051890 for least k such that Z(k,2) <= Z(n,3).

%K nonn

%O 0,1

%A _Benoit Cloitre_, Nov 29 2002