login
A077052
Right Moebius transformation matrix, M, by antidiagonals.
3
1, 0, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
If S=(s(1),s(2),...) is a sequence written as a row vector, then S*M is the Moebius transform of S; i.e. its n-th term is Sum{mu(k)*s(k): k|n}. M is the transpose of the left Moebius transformation matrix, A077050.
FORMULA
M=T^(-1), where T is the right summatory matrix, A077051.
EXAMPLE
Northwest corner:
1 -1 -1 0 -1 1
0 1 0 -1 0 -1
0 0 1 0 0 -1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Clark Kimberling, Oct 22 2002
STATUS
approved