Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #23 Jan 14 2023 10:51:09
%S 7,23,61,113,211,337,509,727,997,1327,1723,2179,2741,3373,4093,4909,
%T 5827,6857,7993,9257,10639,12163,13807,15619,17573,19681,21943,24379,
%U 26993,29789,32749,35933,39301,42863,46649,50651,54869,59281,63997
%N Largest prime < n^3.
%H Vincenzo Librandi, <a href="/A077037/b077037.txt">Table of n, a(n) for n = 2..1000</a>
%F a(n) > (n-1)^3 for all large n, by Ingham's theorem (see A060199). - _Jonathan Sondow_, Mar 27 2014
%t PrimePrev[n_]:=Module[{k},k=n-1;While[ !PrimeQ[k],k-- ];k];f[n_]:=n^3;lst={};Do[AppendTo[lst,PrimePrev[f[n]]],{n,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Feb 25 2010 *)
%t Table[NextPrime[n^3, -1], {n, 2, 40}] (* _Robert G. Wilson v_, Aug 17 2010 *)
%o (Python)
%o from sympy import prevprime
%o def a(n): return prevprime(n**3)
%o print([a(n) for n in range(2, 41)]) # _Michael S. Branicky_, Jul 23 2021
%o (PARI) a(n) = precprime(n^3); \\ _Michel Marcus_, Jan 14 2023
%Y Cf. A053001, A014220, A000578, A060199.
%K nonn
%O 2,1
%A _Reinhard Zumkeller_, Oct 21 2002