login
A076948
Smallest k such that nk-1 is a square, or 0 if no such number exists.
3
1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 10, 0, 0, 0, 0, 5, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 10, 13, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 1, 0
OFFSET
1,13
LINKS
FORMULA
a(n) != 0 if and only if n is a term of A008784. - Joerg Arndt, Apr 27 2020
a(n) = 1 if and only if n is a term of A002522. - Bernard Schott, Apr 27 2020
MATHEMATICA
a[n_] := Module[{r, j, k}, r = Solve[j>0 && k>0 && n k - 1 == j^2, {j, k}, Integers]; If[r === {}, Return[0], Return[k /. (r /. C[1] -> 0) // Min]]]; a[1] = 1;
Array[a, 100] (* Jean-François Alcover, Apr 27 2020 *)
PROG
(Haskell)
a076948 1 = 1
a076948 n = if null qs then 0 else head qs
where qs = filter ((> 0) . a037213 . subtract 1 . (* n)) [1..n]
-- Reinhard Zumkeller, Oct 25 2015
(PARI) a(n) = if (!issquare(Mod(-1, n)), 0, my(k=1); while (!issquare(n*k-1), k++); k); \\ Michel Marcus, Apr 27 2020
CROSSREFS
Cf. A008784.
Cf. A037213.
Sequence in context: A357879 A072325 A294929 * A255309 A335446 A376514
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Oct 20 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Oct 21 2002
STATUS
approved