login
A076931
Smallest k such that n*k has n divisors.
4
1, 1, 3, 2, 125, 2, 16807, 3, 4, 8, 2357947691, 5, 1792160394037, 32, 135, 24, 2862423051509815793, 10, 5480386857784802185939, 12, 1701, 512, 39471584120695485887249589623, 15, 400, 2048, 972, 48, 3053134545970524535745336759489912159909
OFFSET
1,3
COMMENTS
n=p_1^a_1*...*p_r^a_r => tau(p_1^(p_1^a_1-1)*...*p_r^(p_r^a_r-1))=n, so sequence is well-defined.
FORMULA
a(p)=p^(p-2), a(pq)=p^(q-2)*q^(p-2) for p<q, a(2^2)=2, a(p^2)=p^(p-3)*2^(p-1) for p!=2.
MATHEMATICA
f[n_] := Block[{k = 1, m = If[ PrimeQ[n], n^(n-2), 1]}, While[ DivisorSigma[0, k*m*n] != n, k++ ]; k*m]; Table[f[n], {n, 29}] (* Robert G. Wilson v, Sep 29 2005 *)
CROSSREFS
a(n)= A073904(n)/n.
Sequence in context: A002297 A183270 A152017 * A076932 A244083 A303683
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Oct 18 2002
EXTENSIONS
More terms from Sascha Kurz, Jan 21 2003
More terms from David Wasserman, Aug 19 2005
STATUS
approved