The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076847 Ramanujan function tau(p) as p runs through the primes. 10
 -24, 252, 4830, -16744, 534612, -577738, -6905934, 10661420, 18643272, 128406630, -52843168, -182213314, 308120442, -17125708, 2687348496, -1596055698, -5189203740, 6956478662, -15481826884, 9791485272, 1463791322, 38116845680, -29335099668, -24992917110 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS From Wolfdieter Lang, May 15 2016: (Start) This sequence determines all values of Ramanujan's tau function A000594 due to alpha-multiplicativity with alpha(x) = x^11 (the weight of the modular cusp form eta^{24}(z) with the Dedekind eta function is k = 12). See the Apostol reference, p. 138, eq. (54) for alpha-multiplicativity and p. 114, eq. (3) for the tau function. This implies multiplicativity of tau with tau(prime(n)^k) = sqrt(prime(n)^11)^k*S(k, a(n) / sqrt(prime(n)^11)), with the Chebyshev S polynomials (A049310), for n >= 1 and k >= 2. See the Apostol Exercise 6 on p. 139. Note that the product representation of the Dirichlet series Sum_{n >=1} tau(n)/Sum_{n >= 1} tau(n)/n^s = Prod_{n >= 1} 1/(1 - a(n)/prime(n)^s + prime(n)^(11) / prime(n)^(2*s)) (see the Mordell reference, eq. (2)) leads also to this formula for tau(p^k) for primes p after expanding the factors of the product and collecting powers of 1/p^(k*s). If one insists on convergence of the product one can use s >= 7, if one uses Ramanujan's 1916 conjecture (proved by P. Deligne 1974) |tau(p)| <= 2*p^(11/2), i.e., |a(n)| <= 2*sqrt(prime(n)^11). (End) REFERENCES Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 114, 138-139. LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 Denis Xavier Charles, Computing the Ramanujan tau function, Ramanujan J. 11:2 (2006), pp. 221-224. D. H. Lehmer, The Vanishing of Ramanujan's Function tau(n), Duke Mathematical Journal, 14 (1947), pp. 429-433. D. H. Lehmer, The Vanishing of Ramanujan's Function tau(n), Duke Mathematical Journal, 14 (1947), pp. 429-433. [Annotated scanned copy] Louis J. Mordell, On Mr. Ramanujan's empirical expansions of modular functions, Proceedings of the Cambridge Philosophical Society 19 (1917), pp. 117-124. H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973. Wikipedia, Ramanujan-Petersson conjecture FORMULA a(n)*a(m) = A000594(prime(n)*prime(m)) for n != m (from the tau multiplicativity). - Wolfdieter Lang, May 15 2016 a(n)^2 = A000594(prime(n)^2)) + prime(n)^11 (from alpha-multiplicativity). - Wolfdieter Lang, May 15 2016 EXAMPLE 84480 = A000594(2^3) = sqrt(2^(11))^3*S(3, -24/sqrt(2^(11))) = (-24)*((-24)^2 -2*2^11) = 84480. - Wolfdieter Lang, May 15 2016 MATHEMATICA RamanujanTau[Prime[Range[30]]] (* Jean-François Alcover, Dec 01 2015 *) PROG (PARI) taup(p)=(65*sigma(p, 11)+691*sigma(p, 5)-691*252*sum(k=1, p-1, sigma(k, 5)*sigma(p-k, 5)))/756 a(n)=taup(prime(n)) \\ Charles R Greathouse IV, Apr 22 2013 (PARI) H(n)=sumdiv(core(n, 1)[2], d, my(D=-n/d^2); if(D%4<2, qfbclassno(D)/max(1, D+6))) taup(p)=my(x='x, P=x^5-9*p*x^4+28*p^2*x^3-35*p^3*x^2+15*p^4*x-p^5); p^5*H(4*p)/2-1-sum(t=1, sqrtint(4*p), subst(P, x, t^2)*H(4*p-t^2)) a(n)=taup(prime(n)) \\ Charles R Greathouse IV, Apr 25 2013 (Perl) use ntheory ":all"; forprimes { say ramanujan_tau(\$_) } 100 # Dana Jacobsen, Sep 05 2015 (Sage) [p for (n, p) in enumerate(list(delta_qexp(100))) if is_prime(n)] # Peter Luschny, May 16 2016 CROSSREFS Cf. A000594, A049310, A278577 (prime powers). Sequence in context: A022716 A181104 A051828 * A296575 A009175 A308054 Adjacent sequences:  A076844 A076845 A076846 * A076848 A076849 A076850 KEYWORD sign AUTHOR N. J. A. Sloane, Nov 23 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 19:11 EDT 2021. Contains 343177 sequences. (Running on oeis4.)