login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076847 Ramanujan function tau(p) as p runs through the primes. 10
-24, 252, 4830, -16744, 534612, -577738, -6905934, 10661420, 18643272, 128406630, -52843168, -182213314, 308120442, -17125708, 2687348496, -1596055698, -5189203740, 6956478662, -15481826884, 9791485272, 1463791322, 38116845680, -29335099668, -24992917110 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

From Wolfdieter Lang, May 15 2016: (Start)

This sequence determines all values of Ramanujan's tau function A000594 due to alpha-multiplicativity with alpha(x) = x^11 (the weight of the modular cusp form eta^{24}(z) with the Dedekind eta function is k = 12). See the Apostol reference, p. 138, eq. (54) for alpha-multiplicativity and p. 114, eq. (3) for the tau function. This implies multiplicativity of tau with tau(prime(n)^k) = sqrt(prime(n)^11)^k*S(k, a(n) / sqrt(prime(n)^11)), with the Chebyshev S polynomials (A049310), for n >= 1 and k >= 2. See the Apostol Exercise 6 on p. 139.

Note that the product representation of the Dirichlet series Sum_{n >=1} tau(n)/Sum_{n >= 1} tau(n)/n^s = Prod_{n >= 1} 1/(1 - a(n)/prime(n)^s + prime(n)^(11) / prime(n)^(2*s)) (see the Mordell reference, eq. (2)) leads also to this formula for tau(p^k) for primes p after expanding the factors of the product and collecting powers of 1/p^(k*s). If one insists on convergence of the product one can use s >= 7, if one uses Ramanujan's 1916 conjecture (proved by P. Deligne 1974) |tau(p)| <= 2*p^(11/2), i.e., |a(n)| <= 2*sqrt(prime(n)^11).

(End)

REFERENCES

Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 114, 138-139.

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

Denis Xavier Charles, Computing the Ramanujan tau function, Ramanujan J. 11:2 (2006), pp. 221-224.

D. H. Lehmer, The Vanishing of Ramanujan's Function tau(n), Duke Mathematical Journal, 14 (1947), pp. 429-433.

D. H. Lehmer, The Vanishing of Ramanujan's Function tau(n), Duke Mathematical Journal, 14 (1947), pp. 429-433. [Annotated scanned copy]

Louis J. Mordell, On Mr. Ramanujan's empirical expansions of modular functions, Proceedings of the Cambridge Philosophical Society 19 (1917), pp. 117-124.

H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.

Wikipedia, Ramanujan-Petersson conjecture

FORMULA

a(n)*a(m) = A000594(prime(n)*prime(m)) for n != m (from the tau multiplicativity). - Wolfdieter Lang, May 15 2016

a(n)^2 = A000594(prime(n)^2)) + prime(n)^11 (from alpha-multiplicativity). - Wolfdieter Lang, May 15 2016

EXAMPLE

84480 = A000594(2^3) = sqrt(2^(11))^3*S(3, -24/sqrt(2^(11))) = (-24)*((-24)^2 -2*2^11) = 84480. - Wolfdieter Lang, May 15 2016

MATHEMATICA

RamanujanTau[Prime[Range[30]]] (* Jean-Fran├žois Alcover, Dec 01 2015 *)

PROG

(PARI) taup(p)=(65*sigma(p, 11)+691*sigma(p, 5)-691*252*sum(k=1, p-1, sigma(k, 5)*sigma(p-k, 5)))/756

a(n)=taup(prime(n)) \\ Charles R Greathouse IV, Apr 22 2013

(PARI) H(n)=sumdiv(core(n, 1)[2], d, my(D=-n/d^2); if(D%4<2, qfbclassno(D)/max(1, D+6)))

taup(p)=my(x='x, P=x^5-9*p*x^4+28*p^2*x^3-35*p^3*x^2+15*p^4*x-p^5); p^5*H(4*p)/2-1-sum(t=1, sqrtint(4*p), subst(P, x, t^2)*H(4*p-t^2))

a(n)=taup(prime(n)) \\ Charles R Greathouse IV, Apr 25 2013

(Perl) use ntheory ":all"; forprimes { say ramanujan_tau($_) } 100 # Dana Jacobsen, Sep 05 2015

(Sage)

[p for (n, p) in enumerate(list(delta_qexp(100))) if is_prime(n)] # Peter Luschny, May 16 2016

CROSSREFS

Cf. A000594, A049310, A278577 (prime powers).

Sequence in context: A022716 A181104 A051828 * A296575 A009175 A296916

Adjacent sequences:  A076844 A076845 A076846 * A076848 A076849 A076850

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 23 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 21:59 EST 2019. Contains 320200 sequences. (Running on oeis4.)