login
A076814
Integer averages of five successive primes squared, (prime(n)^2+prime(n+1)^2+prime(n+2)^2+prime(n+3)^2+prime(n+4)^2)/5, for some n (see A076814).
2
173329, 2723401, 7473769, 8941585, 9001465, 12978889, 13036537, 20273569, 36595345, 36682537, 52600465, 52774873, 52961113, 67138681, 67302601, 67473265, 78972121, 116515177, 121251433, 121560049, 123179113, 124184545, 124416361, 130951609, 141215449
OFFSET
1,1
COMMENTS
Unlike the average of two, three or four successive primes squares, the average of five successive primes squared is not always an integer. The values of starting index in the sequence of five successive primes squared having integer average are in A076815.
FORMULA
(prime(n)^2+prime(n+1)^2+prime(n+2)^2+prime(n+3)^2+prime(n+4)^2)/5.
EXAMPLE
173329 is OK because, starting with n=79, five successive primes squared has average 173329.
MATHEMATICA
Select[Mean/@Partition[Prime[Range[2000]]^2, 5, 1], IntegerQ] (* Harvey P. Dale, May 22 2021 *)
CROSSREFS
Cf. A076815.
Sequence in context: A233488 A233483 A251117 * A204792 A281621 A147314
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Oct 17 2002
EXTENSIONS
More terms from Harvey P. Dale, May 22 2021
STATUS
approved