login
A076760
3-apexes of Omega: numbers k such that Omega(k-3) < Omega(k-2)< Omega(k-1) < Omega(k) > Omega(k+1) > Omega(k+2) > Omega(k+3), where Omega(m) = the number of prime factors of m, counting multiplicity.
1
1376, 6656, 9424, 12104, 18656, 19376, 29224, 30304, 40976, 41504, 41824, 44864, 51624, 57784, 59224, 61984, 66520, 70300, 70624, 70736, 72064, 74920, 82160, 87296, 93500, 94424
OFFSET
1,1
COMMENTS
I call n a "k-apex" (or "apex of height k") of the arithmetical function f if n satisfies f(n-k) < ... < f(n-1) < f(n) > f(n+1) > .... > f(n+k).
LINKS
EXAMPLE
Omega(1373) = 1 < Omega(1374) = 3 < Omega(1375) = 4 < Omega(1376)= 6 > Omega(1377) = 5 > Omega(1378) = 3 > Omega(1379) = 2, so 1376 is a 3-apex of Omega.
MATHEMATICA
Omega[n_] := Apply[Plus, Transpose[FactorInteger[n]][[2]]]; Select[Range[5, 10^5], Omega[ # - 3] < Omega[ # - 2] < Omega[ # - 1] < Omega[ # ] > Omega[ # + 1] > Omega[ # + 2] > Omega[ # + 3] &]
Flatten[Position[Partition[PrimeOmega[Range[100000]], 7, 1], _?(#[[1]]< #[[2]]< #[[3]]<#[[4]]>#[[5]]>#[[6]]>#[[7]]&), 1, Heads->False]]+3 (* Harvey P. Dale, Apr 03 2022 *)
CROSSREFS
Cf. A001222.
Sequence in context: A206340 A056087 A122692 * A283231 A283790 A345515
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Nov 13 2002
STATUS
approved