login
A076759
2-apexes of Omega: numbers k such that Omega(k-2)< Omega(k-1) < Omega(k) > Omega(k+1) > Omega(k+2), where Omega(m) = the number of prime factors of m, counting multiplicity.
2
189, 315, 405, 675, 729, 891, 1029, 1053, 1269, 1376, 1395, 1485, 1683, 1701, 1755, 1845, 1863, 1875, 1917, 1995, 2025, 2205, 2349, 2457, 2475, 2691, 2709, 2805, 2835, 2925, 2997, 3003, 3075, 3125, 3267, 3315, 3375, 3465, 3525, 3576, 3591, 3675, 3861
OFFSET
1,1
COMMENTS
I call n a "k-apex" (or "apex of height k") of the arithmetical function f if n satisfies f(n-k) < ... < f(n-1) < f(n) > f(n+1) > .... > f(n+k).
LINKS
EXAMPLE
Omega(187) = 2 < Omega(188) = 3 < Omega(189) = 4 > Omega(190)= 3 > Omega(191) = 1, so 189 is a 2-apex of Omega.
MATHEMATICA
Select[Range[4, 10^4], Omega[ # - 2] < Omega[ # - 1] < Omega[ # ] > Omega[ # + 1] > Omega[ # + 2] &]
Flatten[Position[Partition[PrimeOmega[Range[4000]], 5, 1], _?(#[[1]]<#[[2]]<#[[3]]> #[[4]]> #[[5]]&), 1, Heads->False]]+2 (* Harvey P. Dale, Apr 11 2022 *)
CROSSREFS
Cf. A001222.
Sequence in context: A348160 A320709 A224674 * A348544 A211815 A347390
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Nov 13 2002
STATUS
approved