OFFSET
1,1
COMMENTS
From Bernard Schott, Dec 28 2018: (Start)
By Wolstenholme's Theorem, if p prime >= 5, the numerator of the harmonic number H_{p-1} is always divisible by p^2. The obtained quotients are in A061002.
The numerators of H_7 and H_{29} are also divisible by prime squares, respectively by 11^2 and 43^2, but not in the case of Wolstenholme's theorem, so the denominators of H_7 and H_{29} are not in this sequence here. (End)
LINKS
Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
EXAMPLE
a(1)=12 because the numerator of H_4 = 25/12 is divisible by the square of 5;
a(2)=20 because the numerator of H_6 = 49/20 is divisible by the square of 7.
MATHEMATICA
a[p_] := Denominator[HarmonicNumber[p - 1]]; a /@ Prime@Range[3, 20] (* Amiram Eldar, Dec 28 2018 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Michael Gilleland (megilleland(AT)yahoo.com), Oct 23 2002
EXTENSIONS
More terms added by Amiram Eldar, Dec 04 2018
STATUS
approved