login
Sum of squares of divisors d of n such that n/d is odd.
14

%I #35 Sep 15 2020 06:36:04

%S 1,4,10,16,26,40,50,64,91,104,122,160,170,200,260,256,290,364,362,416,

%T 500,488,530,640,651,680,820,800,842,1040,962,1024,1220,1160,1300,

%U 1456,1370,1448,1700,1664,1682,2000,1850,1952,2366,2120,2210,2560,2451,2604

%N Sum of squares of divisors d of n such that n/d is odd.

%H Robert Israel, <a href="/A076577/b076577.txt">Table of n, a(n) for n = 1..10000</a>

%H J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&amp;pg=RA1-PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).

%H <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>

%F G.f.: Sum_{m>0} m^2*x^m/(1-x^(2*m)). More generally, if b(n, k) is sum of k-th powers of divisors d of n such that n/d is odd then b(2n, k) = sigma_k(2n)-sigma_k(n), b(2n+1, k) = sigma_k(2n+1), where sigma_k(n) is sum of k-th powers of divisors of n. G.f. for b(n, k): Sum_{m>0} m^k*x^m/(1-x^(2*m)).

%F b(n, k) is multiplicative: b(2^e, k) = 2^(k*e), b(p^e, k) = (p^(ke+k)-1)/(p^k-1) for an odd prime p.

%F a(2*n) = sigma_2(2*n)-sigma_2(n), a(2*n+1) = sigma_2(2*n+1), where sigma_2(n) is sum of squares of divisors of n (cf. A001157).

%F b(n, k) = (sigma_k(2n)-sigma_k(n))/2^k. - _Vladeta Jovovic_, Oct 06 2003

%F Dirichlet g.f.: zeta(s)*(1-1/2^s)*zeta(s-2). - _Geoffrey Critzer_, Mar 28 2015

%F L.g.f.: -log(Product_{ k>0 } (x^k-1)^k/(x^k+1)^k)/2 = Sum_{ n>0 } (a(n)/n)*x^n. - _Benedict W. J. Irwin_, Jul 05 2016

%F Sum_{k=1..n} a(k) ~ 7*Zeta(3)*n^3 / 24. - _Vaclav Kotesovec_, Feb 08 2019

%e G.f. = x + 4*x^2 + 10*x^3 + 16*x^4 + 26*x^5 + 40*x^6 + 50*x^7 + 64*x^8 + ...

%p a:= n -> mul(`if`(t[1]=2, 2^(2*t[2]),

%p (t[1]^(2*(1+t[2]))-1)/(t[1]^2-1)),t=ifactors(n)[2]):

%p map(a, [$1..100]); # _Robert Israel_, Jul 05 2016

%t a[ n_] := If[ n < 1, 0, Sum[ d^2 Mod[ n/d, 2], {d, Divisors @ n}]]; (* _Michael Somos_, Jun 09 2014 *)

%t Table[CoefficientList[Series[-Log[Product[(x^k - 1)^k/(x^k + 1)^k, {k, 1, 80}]]/2, {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* _Benedict W. J. Irwin_, Jul 05 2016 *)

%t f[2, e_] := 4^e; f[p_, e_] := (p^(2*e + 2) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 15 2020 *)

%o (PARI) a(n) = sumdiv(n, d, d^2*((n/d) % 2)); \\ _Michel Marcus_, Jun 09 2014

%Y Cf. A001227, A002131, A001157, A050999.

%Y Glaisher's Delta'_i (i=0..12): A001227, A002131, A076577, A007331, A285989, A096960, A321817, A096961, A321818, A096962, A321819, A096963, A321820

%K mult,nonn

%O 1,2

%A _Vladeta Jovovic_, Oct 19 2002