login
A076529
Numbers k for which phi(k) = phi(k+1) - phi(k-1).
3
2, 4, 6, 10, 16, 22, 36, 40, 46, 100, 136, 232, 256, 856, 1036, 1296, 1540, 1600, 2016, 4336, 6526, 9178, 14400, 16096, 30496, 55386, 61132, 62800, 65536, 72580, 77616, 110176, 152650, 179296, 244966, 299650, 603460, 619696, 686736, 1876726, 2841916, 3058210
OFFSET
1,1
LINKS
EXAMPLE
phi(22) = 10; phi(23) = 22; phi(21) = 12 and 10 = 22 - 12; hence 22 is a term of the sequence.
MATHEMATICA
Select[Range[2, 10^5], EulerPhi[#] == EulerPhi[#+1] - EulerPhi[#-1] &]
Flatten[ Position[Partition[EulerPhi[Range[31*10^5]], 3, 1], _?(#[[2]] == #[[3]] -#[[1]]&), 1, Heads->False]]+1 (* Harvey P. Dale, Dec 28 2017 *)
CROSSREFS
Sequence in context: A192447 A131882 A073150 * A323283 A279715 A132212
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Oct 18 2002
EXTENSIONS
Missing first term added by Donovan Johnson, Dec 06 2012
STATUS
approved