login
A076409
Sum of the quadratic residues of prime(n).
18
1, 1, 5, 7, 22, 39, 68, 76, 92, 203, 186, 333, 410, 430, 423, 689, 767, 915, 1072, 994, 1314, 1343, 1577, 1958, 2328, 2525, 2369, 2675, 2943, 3164, 3683, 3930, 4658, 4587, 5513, 5134, 6123, 6520, 6012, 7439, 7518, 8145, 7831, 9264, 9653, 8955, 10761, 11596
OFFSET
1,3
COMMENTS
Row sums of A063987. - R. J. Mathar, Jan 08 2015
prime(n) divides a(n) for n > 2. This is implied by a variant of Wolstenholme's theorem (see Hardy & Wright reference). - Isaac Saffold, Jun 21 2018
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 4th ed., Oxford Univ. Press, 1960, p. 88-90.
Kenneth A. Ribet, Modular forms and Diophantine questions, Challenges for the 21st century (Singapore 2000), 162-182; World Sci. Publishing, River Edge NJ 2001; Math. Rev. 2002i:11030.
LINKS
Christian Aebi and Grant Cairns, Sums of Quadratic residues and nonresidues, arXiv preprint arXiv:1512.00896 [math.NT] (2015).
FORMULA
If prime(n) = 4k+1 then a(n) = k*(4k+1).
For n>2 if prime(n) = 4k+3 then a(n) = (k - b)*(4k+3) where b = (h(-p) - 1) / 2; h(-p) = A002143. For instance. If n=5, p=11, k=2, b=(1-1)/2=0 and a(5) = 2*11 = 22. If n=20, p=71, k=17, b=(7-1)/2=3 and a(20) = 14*71 = 994. - Andrés Ventas, Mar 01 2021
EXAMPLE
If n = 3, then p = 5 and a(3) = 1 + 4 = 5. If n = 4, then p = 7 and a(4) = 1 + 4 + 2 = 7. If n = 5, then p = 11 and a(5) = 1 + 4 + 9 + 5 + 3 = 22. - Michael Somos, Jul 01 2018
MAPLE
A076409 := proc(n)
local a, p, i ;
p := ithprime(n) ;
a := 0 ;
for i from 1 to p-1 do
if numtheory[legendre](i, p) = 1 then
a := a+i ;
end if;
end do;
a ;
end proc: # R. J. Mathar, Feb 26 2011
MATHEMATICA
Join[{1, 1}, Table[ Apply[ Plus, Flatten[ Position[ Table[ JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]]], {n, 3, 48}]]
Join[{1}, Table[p=Prime[n]; If[Mod[p, 4]==1, p(p-1)/4, Sum[PowerMod[k, 2, p], {k, p/2}]], {n, 2, 1000}]] (* Zak Seidov, Nov 02 2011 *)
a[ n_] := If[ n < 3, Boole[n > 0], With[{p = Prime[n]}, Sum[ Mod[k^2, p], {k, (p - 1)/2}]]]; (* Michael Somos, Jul 01 2018 *)
PROG
(PARI) a(n, p=prime(n))=if(p<5, return(1)); if(k%4==1, return(p\4*p)); sum(k=1, p-1, k^2%p) \\ Charles R Greathouse IV, Feb 21 2017
CROSSREFS
Cf. A076410.
Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.
Sequence in context: A036498 A350193 A248086 * A294154 A260658 A028281
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Oct 08 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Oct 09 2002
STATUS
approved