login
Increasing partial quotients of the continued fraction for agm(1,i)/(1+i).
2

%I #11 Oct 03 2019 14:15:57

%S 0,1,2,42,61,88,238,254,288,347,575,4034,9853,21798,49736,108435,

%T 109003,181562,1035352,1955976,6950275,30712753,41463747,45117343,

%U 112401242,116579541

%N Increasing partial quotients of the continued fraction for agm(1,i)/(1+i).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Arithmetic-GeometricMean.html">Arithmetic-Geometric Mean</a>

%H Wolfram Research, <a href="http://functions.wolfram.com/EllipticFunctions/ArithmeticGeometricMean/">Arithmetic-Geometric Mean</a>

%e A076391(1) = 0

%e A076391(2) = 1

%e A076391(4) = 2

%e A076391(5) = 42

%e A076391(96) = 61

%e A076391(121) = 88

%e A076391(310) = 238

%e A076391(461) = 254

%e A076391(540) = 288

%e A076391(627) = 347

%e A076391(699) = 575

%e A076391(1136) = 4034

%e A076391(2986) = 9853

%e A076391(4172) = 21798

%e A076391(16727) = 49736

%e A076391(39201) = 108435

%e A076391(110180) = 109003

%e A076391(130606) = 181562

%e A076391(506314) = 1035352

%e A076391(512390) = 1955976

%e A076391(1248836) = 6950275

%e A076391(1990391) = 30712753

%e A076391(2528055) = 41463747

%e A076391(4853400) = 45117343

%e A076391(7427594) = 112401242

%e A076391(96166990) = 116579541

%t a = ContinuedFraction[ Chop[ N[ ArithmeticGeometricMean[1, I]/(1 + I), 10^4]]]; b = 0; Do[ If[ a[[n]] > b, Print[a[[n]]]; b = a[[n]]], {n, 1, 10^4}]

%Y Cf. A076390 & A076391.

%K nonn,more

%O 1,3

%A _Robert G. Wilson v_, Oct 09 2002

%E a(21)-a(26) from _Vaclav Kotesovec_, Oct 03 2019