%I #29 Nov 01 2022 12:21:42
%S 7681,10753,11777,12289,13313,15361,17921,18433,19457,23041,25601,
%T 26113,32257,36353,37889,39937,40961,45569,50177,51713,58369,59393,
%U 61441,64513,65537,67073,70657,76289,76801,79873,80897,81409,83969
%N Primes of the form 512*k+1.
%C Odd primes p such that -1 is a 256th power mod p. - _Eric M. Schmidt_, Mar 27 2014
%D M. Kraitchik, Theorie des Nombres, Gauthier-Villars (I. 1922, II. 1929).
%D M. Kraitchik, Recherches sur la theorie des nombres, Gauthier-Villars (1924).
%H Reinhard Zumkeller, <a href="/A076339/b076339.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) ~ 256n log n. - _Charles R Greathouse IV_, Nov 01 2022
%e A076338(15) = 512*15+1 = a(1) = 7681 = A000040(974);
%e A076338(21) = 512*21+1 = a(2) = 10753 = A000040(1311);
%e a(38) - a(37) = 95233 - 87553 = 7680 = a(1)-1.
%t Select[512 Range[164] + 1, PrimeQ] (* _Bruno Berselli_, Feb 23 2012 *)
%o (Haskell)
%o a076339 n = a076339_list !! (n-1)
%o a076339_list = filter ((== 1) . a010051) [1,513..]
%o -- _Reinhard Zumkeller_, Mar 06 2012
%o (PARI) forprimestep(p=7681,83969,512, print1(p", ")) \\ _Charles R Greathouse IV_, Nov 01 2022
%Y Cf. A076338, A065091, A002144, A007519, A094407, A133870, A142925, A208177, A208178.
%K nonn,easy
%O 1,1
%A _Reinhard Zumkeller_, Oct 07 2002