login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076307 a(n) = n+min(2*floor(a(n-1)/2), 3*floor(a(n-1)/3)) for n > 1, a(1)=1. 0
1, 2, 3, 6, 11, 15, 21, 28, 36, 46, 56, 66, 79, 92, 105, 120, 137, 153, 171, 190, 210, 232, 254, 276, 301, 326, 351, 378, 407, 435, 465, 496, 528, 562, 596, 630, 667, 704, 741, 780, 821, 861, 903, 946, 990, 1036, 1082, 1128, 1177, 1226, 1275, 1326, 1379, 1431 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..54.

Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1).

FORMULA

a(n) = n*(n-1)/2 + b(n) where b repeats the period (1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0) of length 12.

a(n) = +2*a(n-1) -a(n-2) +a(n-12) -2*a(n-13) +a(n-14).

G.f.: -x*(1+2*x^4-x^5+2*x^6+x^7+x^8+2*x^9+2*x^12+2*x^3) / ( (1+x) *(1+x^2) *(1+x+x^2) *(x^2-x+1) *(x^4-x^2+1) *(x-1)^3 ).

MATHEMATICA

LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {1, 2, 3, 6, 11, 15, 21, 28, 36, 46, 56, 66, 79, 92}, 60] (* Harvey P. Dale, Nov 29 2013 *)

PROG

(MAGMA) [ n eq 1 select 1 else n+Min(2*Floor(Self(n-1)/2), 3*Floor(Self(n-1)/3)) : n in [1..60] ]; // Klaus Brockhaus, Dec 03 2010

(MAGMA) b:=func< n | [1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0][(n mod 12)+1] >; [ n*(n-1)/2+b(n-1): n in [1..60] ]; // Klaus Brockhaus, Dec 03 2010

CROSSREFS

Sequence in context: A090304 A005211 A298702 * A102990 A138519 A138520

Adjacent sequences:  A076304 A076305 A076306 * A076308 A076309 A076310

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Nov 06 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 18:11 EST 2020. Contains 338616 sequences. (Running on oeis4.)