login
A076160
Sod_4 - sod_3 + sod_2 - sod_1, where sod_k is the sum of k-th powers of digits of n.
0
0, 0, 10, 60, 204, 520, 1110, 2100, 3640, 5904, 0, 0, 10, 60, 204, 520, 1110, 2100, 3640, 5904, 10, 10, 20, 70, 214, 530, 1120, 2110, 3650, 5914, 60, 60, 70, 120, 264, 580, 1170, 2160, 3700, 5964, 204, 204, 214, 264, 408, 724, 1314, 2304, 3844, 6108
OFFSET
0,3
COMMENTS
A quasiperiodic function.
FORMULA
Sod_4 - sod_3 + sod_2 - sod_1 = sum(d(d-1)(d^2+1)), d's are digits of n
EXAMPLE
a(4) = 204 = 4(4-1)(4^2+1), a(5) = 520 = 5(5-1)(5^2+1).
MATHEMATICA
sod[n_]:=Module[{idn=IntegerDigits[n]}, Total[Total/@{-idn+idn^2-idn^3+idn^4}]]; Array[sod, 50, 0] (* Harvey P. Dale, Sep 20 2011 *)
CROSSREFS
Sequence in context: A065641 A121874 A144560 * A266732 A283727 A349415
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Nov 01 2002
STATUS
approved