|
|
A076106
|
|
Out of all the n-digit primes, which one takes the longest time to appear in the digits of Pi (ignoring the initial 3)? The answer is a(n), and it appears at position A076130(n).
|
|
3
|
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..6.
C. Rivera, Prime puzzles
|
|
EXAMPLE
|
Of all the 2-digit primes, 11 to 97, the last one to appear in Pi is 73, at position 299 (see A076130). - N. J. A. Sloane, Nov 28 2019
|
|
CROSSREFS
|
Cf. A047658, A076094, A076129, A076130.
Sequence in context: A139966 A175205 A027017 * A202042 A294291 A318688
Adjacent sequences: A076103 A076104 A076105 * A076107 A076108 A076109
|
|
KEYWORD
|
hard,more,nonn,base,changed
|
|
AUTHOR
|
Jean-Christophe Colin (jc-colin(AT)wanadoo.fr), Oct 31 2002
|
|
EXTENSIONS
|
Definition clarified by N. J. A. Sloane, Nov 28 2019
|
|
STATUS
|
approved
|
|
|
|