login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076039 Start with 1. Multiply or divide by n accordingly as a(n-1) is smaller or greater than n and then take the integer value (this is to ensure that a(n) >0 for all n). 4
1, 2, 6, 1, 5, 30, 4, 32, 3, 30, 2, 24, 1, 14, 210, 13, 221, 12, 228, 11, 231, 10, 230, 9, 225, 8, 216, 7, 203, 6, 186, 5, 165, 4, 140, 3, 111, 2, 78, 1, 41, 1722, 40, 1760, 39, 1794, 38, 1824, 37, 1850, 36, 1872, 35, 1890, 34, 1904, 33, 1914, 32, 1920, 31, 1922, 30, 1920 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

William A. Tedeschi, Table of n, a(n) for n=1..10000

FORMULA

a(n) = n*a(n-1) if a(n-1) < n. a(n) = floor[a(n-1)/n] if a(n-1) is >= n.

a(A003462(k)) = 1. For A003462(k) < n <= A003462(k+1), if n-A003462(k) is odd, then a(n) = (3*A003462(k)+3-n)/2 and if n-A003462(k) is even, then a(n) = n*a(n-1). - David Wasserman, Mar 13 2005

EXAMPLE

a(13) = 1 hence a(14) = 14*1 = 14. 14< 15 hence a(15) = 14*15 = 210 >16 hence a(16) = Floor[210/16] = 13.

MATHEMATICA

next[{a_, b_}]:=Module[{c=a+1}, {c, If[b<c, b*c, Floor[b/c]]}]; Transpose[ NestList[next, {1, 1}, 65]][[2]] (* Harvey P. Dale, Oct 06 2011 *)

PROG

(Haskell)

a076039 n = a076039_list !! (n-1)

a076039_list = f 1 1 where

   f n x = x' : f (n+1) x' where

           x' = (if x < n then (*) else div) x n

-- Reinhard Zumkeller, Aug 24 2011

CROSSREFS

Cf. A003462, A076041, A076042, A046901.

Sequence in context: A243434 A265416 A199953 * A280580 A288872 A191100

Adjacent sequences:  A076036 A076037 A076038 * A076040 A076041 A076042

KEYWORD

easy,nice,nonn,look

AUTHOR

Amarnath Murthy, Oct 29 2002

EXTENSIONS

More terms from David Wasserman, Mar 13 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 01:32 EST 2018. Contains 317118 sequences. (Running on oeis4.)