login
A076007
Seventh column of triangle A075503.
3
1, 224, 29568, 3010560, 262090752, 20558512128, 1498264109056, 103450998210560, 6857541631868928, 440486826671603712, 27603867324502769664, 1696189816779885772800, 102592999712419955605504
OFFSET
0,2
COMMENTS
The e.g.f. given below is Sum_{m=0..6} (A075513(7,m)*exp(8*(m+1)*x))/6!.
LINKS
FORMULA
a(n) = A075503(n+7, 7) = (8^n)*S2(n+7, 7) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..6} (A075513(7, m)*((m+1)*8)^n)/6!.
G.f.: 1/Product_{k=1..7} (1 - 8*k*x).
E.g.f.: (d^7/dx^7)(((exp(8*x)-1)/8)^7)/7! = (exp(8*x) - 384*exp(16*x) + 10935*exp(24*x) - 81920*exp(32*x) + 234375*exp(40*x) - 279936*exp(48*x) + 117649*exp(56*x))/6!.
MATHEMATICA
With[{m = 7}, Array[8^(# - m) StirlingS2[#, m] &, 13, m]] (* Michael De Vlieger, Dec 24 2017, after Indranil Ghosh at A075503 *)
CROSSREFS
Cf. A076006.
Sequence in context: A229459 A051367 A280960 * A280672 A204977 A204704
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved