%I #10 Dec 27 2017 01:34:40
%S 1,147,13034,907578,54807627,3016638009,155726334148,7676501248416,
%T 365698066506773,16976491006185711,772549060467762942,
%U 34614587429584922214,1532054031119984651839,67151990527665760714053
%N Sixth column of triangle A075502.
%C The e.g.f. given below is Sum_{m=0..5} A075513(6,m)*exp(7*(m+1)*x)/5!.
%F a(n) = A075502(n+6, 6) = (7^n)*S2(n+6, 6) with S2(n, m) := A008277(n, m) (Stirling2).
%F a(n) = Sum_{m=0..5} A075513(6, m)*((m+1)*7)^n/5!.
%F G.f.: 1/Product_{k=1..6} (1 - 7*k*x).
%F E.g.f.: (d^6/dx^6)(((exp(7*x)-1)/7)^6)/6! = (-exp(7*x) + 160*exp(14*x) - 2430*exp(21*x) + 10240*exp(28*x) - 15625*exp(35*x) + 7776*exp(42*x))/5!.
%t CoefficientList[Series[1/Product[1-7k x,{k,6}],{x,0,20}],x] (* _Harvey P. Dale_, May 25 2012 *)
%Y Cf. A075924, A076002.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Oct 02 2002