The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075914 Sixth column of triangle A075500. 3
 1, 105, 6650, 330750, 14266875, 560896875, 20682062500, 728227500000, 24779833203125, 821666548828125, 26708267167968750, 854772944238281250, 27023254648193359375, 846046877171630859375, 26282219820458984375000, 811330550012329101562500 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The e.g.f. given below is Sum_{m=0..5}(A075513(6,m)*exp(5*(m+1)*x))/5!. LINKS Colin Barker, Table of n, a(n) for n = 0..675 Index entries for linear recurrences with constant coefficients, signature (105,-4375,91875,-1015000,5512500,-11250000). FORMULA a(n) = A075500(n+6, 6) = (5^n)*S2(n+6, 6) with S2(n, m) = A008277(n, m) (Stirling2). a(n) = Sum_{m=0..5}(A075513(6, m)*((m+1)*5)^n)/5!. G.f.: 1/Product_{k=1..6}(1-5*k*x). E.g.f.: (d^6/dx^6)((((exp(5*x)-1)/5)^6)/6!) = (-exp(5*x) + 160*exp(10*x) - 2430*exp(15*x) + 10240*exp(20*x) - 15625*exp(25*x) + 7776*exp(30*x))/5!. G.f.: 1 / ((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)*(1-30*x)). - Colin Barker, Dec 12 2015 MATHEMATICA Table[5^(n-1) * (-1 + 5*2^(5+n) + 5*2^(11+2*n) - 10*3^(5+n) - 5^(6+n) + 6^(5+n))/24, {n, 0, 20}] (* Vaclav Kotesovec, Dec 12 2015 *) PROG (PARI) Vec(1/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)*(1-30*x)) + O(x^30)) \\ Colin Barker, Dec 12 2015 CROSSREFS Cf. A000351, A016164, A075911, A075912, A075913, A075915. Sequence in context: A075350 A165055 A168306 * A075924 A199353 A263888 Adjacent sequences:  A075911 A075912 A075913 * A075915 A075916 A075917 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Oct 02 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 23:00 EST 2020. Contains 332113 sequences. (Running on oeis4.)