OFFSET
0,2
COMMENTS
The e.g.f. given below is Sum_{m=0..4}(A075513(5,m)*exp(5*(m+1)*x))/4!.
LINKS
Colin Barker, Table of n, a(n) for n = 0..714
Index entries for linear recurrences with constant coefficients, signature (75,-2125,28125,-171250,375000).
FORMULA
a(n) = Sum_{m=0..4}(A075513(5, m)*((m+1)*5)^n)/4!.
G.f.: 1/Product_{k=1..5}(1-5*k*x).
E.g.f.: (d^5/dx^5)((((exp(5*x)-1)/5)^5)/5!) = (exp(5*x) - 64*exp(10*x) + 486*exp(15*x) - 1024*exp(20*x) + 625*exp(25*x))/4!.
G.f.: 1 / ((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)). - Colin Barker, Dec 12 2015
MATHEMATICA
Table[5^n*(1 - 2^(n+6) + 2*3^(n+5) - 4^(n+5) + 5^(n+4))/24, {n, 0, 20}] (* Vaclav Kotesovec, Dec 12 2015 *)
PROG
(PARI) Vec(1/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + O(x^30)) \\ Colin Barker, Dec 12 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved