login
A075909
Sixth column of triangle A075499.
1
1, 84, 4256, 169344, 5843712, 183794688, 5421678592, 152720375808, 4157366140928, 110282217357312, 2867778350481408, 73424436820180992, 1857023919127527424, 46511918954689069056, 1155904251854380335104
OFFSET
0,2
COMMENTS
The e.g.f. given below is Sum_{m=0..5} A075513(6,m)*exp(4*(m+1)*x)/5!.
FORMULA
a(n) = A075499(n+6, 6) = (4^n)*S2(n+6, 6) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..5} A075513(6, m)*((m+1)*4)^n/5!.
G.f.: 1/Product_{k=1..6} (1 - 4*k*x).
E.g.f.: (d^6/dx^6)(((exp(4*x)-1)/4)^6)/6! = (-exp(4*x) + 160*exp(8*x) - 2430*exp(12*x) + 10240*exp(16*x) - 15625*exp(20*x) + 7776*exp(24*x))/5!.
CROSSREFS
Sequence in context: A143402 A004379 A075906 * A132052 A273438 A097840
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved