%I #11 Jan 17 2020 16:29:54
%S 1,19,579,13779,397779,11177779,335777779,7937777779,179977777779,
%T 5931777777779,139757777777779,5117377777777779,113559777777777779,
%U 3393517777777777779,79991577777777777779,1931953777777777777779,59771197777777777777779,1517537177777777777777779
%N The (10^n)-th odd-digit number.
%H Andrew Howroyd, <a href="/A075879/b075879.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = A014261(10^n). - _Andrew Howroyd_, Jan 17 2020
%p b:= proc(n) local m, r, d; m, r:= n, 0;
%p while m>0 do d:= irem(m, 5, 'm');
%p if d=0 then d:=5; m:= m-1 fi;
%p r:= d*2-1, r
%p od; parse(cat(r))/10
%p end:
%p a:= n-> b(10^n):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jan 17 2020
%t NextOddNbr[n_Integer] := Block[{d = IntegerDigits[n], c = 0, l}, l = Length[d] - 1; If[ OddQ[d[[ -1]]], d[[ -1]]++ ]; d[[ -1]]++; If[ d[[ -1]] > 10, c++; d[[ -1]] = 1]; While[l != 0, If[c == 1, d[[l]]++; c-- ]; If[ EvenQ[ d[[l]]], d[[l]]++ ]; If[ d[[l]] > 10, c++; d[[l]] = 1]; l-- ]; If[c == 1, d[[1]] = d[[1]] + 10]; FromDigits[d]]; k = 1; Do[k = Nest[NextOddNbr, k, 9*10^n]; Print[k], {n, 0, 7}]
%o (PARI) \\ here b(n) is A014261.
%o b(n)={my(k=1); while(n>5^k, n-=5^k; k++); fromdigits([2*d+1 | d<-digits(5^k+n-1, 5)]) - 3*10^k}
%o a(n)={b(10^n)} \\ _Andrew Howroyd_, Jan 17 2020
%Y Cf. A014261, A331476.
%K base,nonn
%O 0,2
%A _Robert G. Wilson v_, Oct 16 2002
%E Terms a(9) and beyond from _Andrew Howroyd_, Jan 17 2020