login
Decimal expansion of the solution to the donkey problem.
2

%I #35 Apr 29 2023 06:57:22

%S 9,5,2,8,4,7,8,6,4,6,5,4,9,4,1,9,4,7,4,4,1,3,3,3,2,1,8,5,8,0,4,8,3,3,

%T 5,1,7,4,7,5,2,1,5,6,0,8,0,6,4,0,1,6,0,6,0,9,6,7,8,2,2,7,9,9,9,7,2,7,

%U 2,1,2,0,4,9,7,8,9,7,5,1,1,3,7,8,5,8,0,8,3,1,7,3,2,3,1,5

%N Decimal expansion of the solution to the donkey problem.

%H Dr. Math, <a href="https://web.archive.org/web/20200801034958/http://mathforum.org:80/dr.math/faq/faq.grazing.html">Grazing Animals</a>.

%H Marshall Fraser, <a href="http://www.jstor.org/stable/2690163">A tale of two goats</a>, Math. Mag., 55 (1982), 221-227. [_N. J. A. Sloane_, Jul 12 2011]

%F x: 4x*cos^2(x) + (1/2)Pi - 2x - sin(2x) = 0.

%e 0.95284786465494194744133321858048335174752156080640...

%t RealDigits[x /. FindRoot[4*x*Cos[x]^2 + Pi/2 - 2*x - Sin[2*x] == 0, {x, 1}, WorkingPrecision -> 120], 10, 105][[1]] (* _Amiram Eldar_, Apr 29 2023 *)

%o (PARI) solve(x=0, 1, 4*x*cos(x)^2 + Pi/2 - 2*x - sin(2*x)) \\ _Michel Marcus_, Sep 19 2017

%Y Cf. A133731, A173571, A192930.

%K easy,nonn,cons

%O 0,1

%A _Zak Seidov_, Oct 17 2002