The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075771 Let n^2 = q*prime(n) + r with 0 <= r < prime(n); then a(n) = q + r. 10
 1, 2, 5, 4, 5, 12, 17, 10, 15, 16, 31, 36, 9, 28, 41, 48, 57, 24, 31, 50, 9, 16, 37, 48, 49, 76, 15, 42, 85, 116, 79, 114, 137, 52, 41, 96, 121, 148, 27, 52, 79, 144, 139, 16, 65, 136, 109, 84, 141, 220, 49, 86, 169, 166, 209, 254, 33, 124, 169, 240, 55, 48, 297, 66 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The digital sum (base the n-th prime) of n^2. A lower bound is a(n) >= n^2/prime(n) ~ n/log(n log n). No term less than this can occur after index n, e.g., a(n) > 126 for n > 10^3 and a(n) > 954 for n > 10^4. "Late birds" (such that a(k) > a(n) for all k > n) are a(1) = 1, a(2) = 2, a(4) = 4, a(5) = 5, a(21) = 9, a(27) = 15, a(44) = 16, a(104) = 24, a(173) = 59, a(365) = 61, a(369) = 81, a(500) = 100, a(590) = 124, a(735) = 129, a(840) = 152, a(987) = 169, a(1564) = 196, a(1797) = 249, a(2415) = 305, a(3368) = 400, a(3545) = 425, a(4025) = 475, a(4466) = 520, a(5018) = 556, a(5477) = 565, a(6686) = 676, a(7239) = 771, a(8025) = 795, a(8182) = 904, a(9369) = 939, ... Values that occur not less often than any smaller one are: 1, 2, 4 (once), 5, 9, 15 (twice), 16, 48, 64, 86, 100 (three times), 144 (five times), 169 (seven times), ... Values that never occur are: 3, 6, 7, 8, 11, 13, 14, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 32, 34, 35, 38, 39, 40, 43, 44, 45, 47, 51, 53, 54, 56, 58, 62, 67, 68, 69, 70, 71, 72, 74, 75, 77, 78, 80, 82, 83, 87, 89, 90, 91, 92, 94, 97, 98, 99, ... - M. F. Hasler, Nov 25 2016 LINKS M. F. Hasler, Table of n, a(n) for n = 1..10000 C. Lawson-Perfect and D. Cushing, Integer Sequence Reviews: A075771, A032799, A002717, The Aperiodical, Aug. 6, 2016 FORMULA a(n) = ds_prime(n)(n^2), where ds_prime(n) = digital sum base the n-th prime. a(n) = n^2 - (prime(n)-1)*floor(n^2/prime(n)). For example, a(2) = ds_prime(2)(2^2) = ds_3(4) = 1 + 1 = 2; a(6) = ds_prime(6)(6^2) = ds_13(36) = 2 + 10 = 12. EXAMPLE 6^2/p(6) = 36/13 = 2+10/13; a(6) = 2+10 = 12. MATHEMATICA Table[n^2 - (Prime[n] - 1) Floor[n^2 / Prime[n]], {n, 80}] (* Vincenzo Librandi, Feb 18 2015 *) PROG (PARI) a(n) = {my(sq = n^2); my(p = prime(n)); (sq % p) + sq\p; } \\ Michel Marcus, Feb 18 2015 (MAGMA) [n^2-(NthPrime(n)-1)*Floor(n^2/NthPrime(n)): n in [1..70]]; // Vincenzo Librandi, Feb 18 2015 (PARI) A075771(n)=[1, 1]*divrem(n^2, prime(n)) \\ M. F. Hasler, Nov 25 2016 CROSSREFS Cf. A135101, A135102, A135103. Sequence in context: A184617 A290886 A163809 * A198813 A217469 A132698 Adjacent sequences:  A075768 A075769 A075770 * A075772 A075773 A075774 KEYWORD nonn AUTHOR Werner D. Sand, Oct 09 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 17:36 EDT 2022. Contains 356122 sequences. (Running on oeis4.)