|
|
A075717
|
|
1+n+n^13 is a prime.
|
|
4
|
|
|
1, 5, 15, 39, 50, 56, 105, 116, 128, 153, 168, 170, 243, 245, 264, 308, 314, 369, 401, 429, 480, 489, 531, 551, 599, 608, 680, 690, 699, 701, 785, 804, 939, 978, 1050, 1056, 1065, 1073, 1110, 1169, 1224, 1226, 1271, 1283, 1308, 1310, 1391, 1401
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For s = 5,8,11,14,17,20,..., n_s=1+n+n^s is always composite for any n>1. Also at n=1, n_s=3 is a prime for any s. So it is interesting to consider only the cases of s =/= 5,8,11,14,17,20,... and n>1. Here I consider the case s=13 and find several first n's making n_s a prime (or a probable prime).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1900
|
|
EXAMPLE
|
5 is OK because at s=13, n=2, n_s=1+n+n^s=1220703131 is a prime.
|
|
MATHEMATICA
|
Select[Range[1500], PrimeQ[1 + # + #^13] &] (* Harvey P. Dale, Apr 20 2013 *)
|
|
PROG
|
(PARI) n=0; for(k=1, 60, n=n+1; while(!isprime(1+n+n^13), n=n+1); print1(n", "))
(MAGMA) [n: n in [0..2000] | IsPrime(s) where s is 1+n+n^13]; // Vincenzo Librandi, Jul 28 2014
|
|
CROSSREFS
|
Cf. A002384, A075716, A075718.
Sequence in context: A142964 A188282 A014316 * A062487 A084447 A099035
Adjacent sequences: A075714 A075715 A075716 * A075718 A075719 A075720
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Zak Seidov, Oct 03 2002
|
|
EXTENSIONS
|
More terms from Ralf Stephan, Mar 20 2003
|
|
STATUS
|
approved
|
|
|
|